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Abstract—We applied a nonlinear fuzzy partid least squares (FPLS) algorithm for modeling a biological wastewa
ter trestment plant. FPLS embeds the Takagi-Sugeno-Kang (TSK) fuzzy mode into the regression framework of the
partid least squares (PLS) method, in which FPLS utilizes a TSK fuzzy modd for nonlinear characterigtics of the PLS
inner regression. Using this approach, the interpretability of the TSK fuzzy modd overcomes some of the handicaps
of previous nonlinear PLS (NLPLS) dgorithms. As aresult, the FPLS modd gives a more favorable modeling environ-
ment in which the knowledge of experts can be easily applied. Results from applications show that FPLS has the ability
to model the nonlinear process and multiple operating conditions and is able to identify various operating regions in
a smulation benchmark of biological process as wdl asin afull-scade wastewater treatment process. The result shows
that it has the ability to model the nonlinear process and handle multiple operating conditions and is able to predict

the key components of nonlinear biological processes.

Key words Fuzzy Partid Least Squares (FPLS), Multivariate Statisticad Analysis, Nonlinear Moddling, Nonlinear PLS
(NLPLS), Partid Least Squares (PLS), Wastewater Treatment Process (WWTP)

INTRODUCTION

Due to increasing environmental congraints and the necessity of
reicble westewater tregtment, efficient modding and monitoring
methods are becoming more and more important. Reliable modd-
ing and monitoring techniques of biologicd wastewater trestment
plants (WWTP) are necessary to maintain the system performance
as dose as possble to optima conditions. An adequate modd en-
hances the understanding of the biologica processes and it can be
abagis for better process design, control, and operation. Also, pro-
cess monitoring and early fault detection methods are efficient to
execute corrective actionswell before a dangerous situation occurs
in biologica processes.

The underlying point is that improving process monitoring and
control necessarily means ensuring better knowledge of the pro-
cess which variables characterize the process, what are their inter-
nd interactions and what degree of confidence can be attributed to
the messurements? Al these questions are concerned with the char-
acterization of a process, which involves saverd fundamenta dages:
the description of the process, the lidting of the variables character-
izing the process, the establishment of models between the vari-
ables, theidentification of parameters which intervene in these mod-
ds, the Smplification of modds to make them compatible with red-
time use and the vaidation of modds It is generdly recognized
that, depending on the complexity of the process, two approaches
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can be adopted to tackle this modding problem. The firgt is based
on the description of the physical phenomenawhich enablesamech
anidic or firg principles modd. The second uses only datistica
processng of datato obtain ‘black-box’ type models, which do not
take into account the nature and intengty of the physca interac-
tions between the variables The ‘best choice’ often seemsto bea
trade-off between these two viewpoaints, leading to a“ grey-box” mod-
e which uses smplified hypotheses on the fundamenta equations
of physics, for example, in the form of matter balances and energy
baances, datigtics and data processing tools [Ragot et 4., 2001;
Yooetd., 2001].

To date, the most successful modd and theindustrid standard in
biologicd WWTP has been the deterministic mechanistic modd,
Adivated Sudge Modd no. 1 or ASM1 [Henzeet d., 1987]. It has
proven to be an effective modd for carbonaceous and nitrogenous
ubdrate removd processesin WWTPs However, becausethe ASM
moded is high-dimensiona and contains a large number of kinetic
and toichiometric parameters, which should be determined by using
information on specific plant data and process operation, it is not
omnipotent in every Stuaion of modd application. Asaresult, the
generd application of such a complex modd to, for ingance, pro-
cess control and the development of operationa Strategies hasbeen
limited [Yoo et d., 2001, 2002].

Today, empiricad data-based modding is awiddy used dterna
tive to mechanistic modeling Snce it requires less specific knowl-
edge of the process being studied compared to afirg principlesmod-
. Empiricd modding techniquesrequire data (messurements) which
are collected on those variables believed to be representetive of the
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process behavior and of the properties of the product or system out-
put. Stetistical regresson techniques and neurd networks are now
routindy used in the processindugtries for building empirica mod-
ds Satidtica regresson techniques, based upon lesst squares meth-
odology, have been used extengvely for developing linear empiri-
cd modds for prediction from higorica data However, it iswdll
known that when dedling with highly corrdated multivariate prob-
lems, the traditiond least-squiares gpproach can leed to Sngular olu-
tions or imprecise parameter estimation. Limitations due to mea:
urement noise, corrdated variables, unknown varidble and noise
digtribution, and data set dimensiondity can be overcome by goply-
ing multivariate datistica projection based regresson techniques
such as principad component regression (PCR) and projection to
latent gructure (PLS). These two techniques provide a solution to
both the dimensiondity and the correlation problems and can dso
perform filtering of measurement noise. Projection-based techniques
can handle highly correlated, noise-corrupted data sets since they
are based upon the assumption of dependency (correation) between
the variables and, consequently, provide the cgpability to edimate
the main underlying structure in terms of a number of latent vari-
ables which are linear combination of the origind variables [Wold
etd., 1989, Baffi et d., 1999).

However, many chemica and biologicd processes digplay anon-
linear behavior, which cannot be reliably modeled by means of lin-
ear regresson techniques. A number of methodologies have been
proposed to integrate norHineer features within the lineer PLS frame-
work. In particular, when linear PLS is gpplied to non-linear prob-
lems, the minor latent variables cannot dways be discarded since
they may not only describe noise or negligible variancecovariance
gructuresin the data, they may encapsulate significant informetion
about the norHinear nature of the problem. In fact, norHinear sruc-
tures may be modeled by using a combination of higher-order and
lower-order latent variables caculaied from linear PLS [Wold et
d., 1989; Qin and McAvoy, 1992; Beffi et d., 1999; Liu et d., 2000;
Bang et d., 2003].

Biologicd trestment plants have different behavior paterns de-
pending on the influent loads, temperature and the activity of mi-
croorganisms. The modds used for the various operaing conditions
mugt generdly be different. The chdlenge is, however, to build a
sngle modd framework for dl conditions. One solution condsts
of representing the process by a slite of severd modeds, each one
being veid only in a specific operating domain. Another way of
representing the process model condggts of using a sngle structure
resulting from the aggregation of severd sub-modds such as fuzzy
modding. Weighting functions are used to reflect the domains of
influence of each mode [Yen et d., 1998; Tay and Zhang, 1999].

In recent years, Bang et d. [2003] suggested a novel nonlineer
fuzzy partid least squares (FPLS) modding method, which inte-
grated multiple fuzzy modeling capability for aggregation of sev-
erd sub-modds within the linear PLS framework while retaining
the orthogond properties of the linear methodology and keegping a
good visudization capability. In this pgper, we applied afuzzy par-
tid least squares (FPLS) for modeling of abiologica process with
nonlinear features. The outline of this paper isasfollows. Firg, we
briefly present PLS and TSK fuzzy modding. Second, we intro-
duce a nonlinear FPLS modding and prediction method. Third, the
FPLS method is gpplied to predict the important output varigbles

November, 2004

in a amulation benchmark of biologicd process and a full-scde
wadtewater treatment process and the results are discussed. Findly,
the condusion of thiswork is given.

METHODS

1. PLS Moddling Method

The PLS method is a multivarigble linear regresson agorithm
that can handle corrdated inputs and limited data. The agorithm
reduces the dimension of the predictor variables (input metrix, X)
and response variables (output matrix, Y) by projecting them to the
directions (input weight w and output weight ¢) thet maximize the
covariance between input and output variables. This projection de-
composes variables of high collinerity into one-dimensona vari-
ables (input score vector t and output score vector u). The decom+
position of X and Y by score vectorsisformulated asfollows

X =3 t,p +E 1
hZthh @

Y =3 uah+F 2
hZLUth @

where p and g areloading vectors, and E and F areresiduds.
2. TSK Fuzzy Modding

The fuzzy inference system proposed by Takagi, Sugeno and
Kang, known as the TSK modd, provides a powerful tool for mod-
ing complex nonlinear sysems[Yen et d., 1998). Typicdly, aTSK
mode conssts of IFTHEN rulesof theform

R:if x isAyand - and X, iSA; theny,
=bothx++hx  for i=1,2 -, L ®

where L is the number of rules, x=[x, x, - x]" are input vari-
ailes y, arelocd output varidbles, A; arethe fuzzy setsthet are char-
acterized by the membership function A;(x), and b=[b, b, - b,]"
are red-vdued parameters. The overdl output of the modd is com-
puted by

_ Z,L:J.Y. _ le_:]..[l(blo X+ +b|rxr)
y="_1 - L @
z|=1T‘ Z.Ji

where 1, isthefiring strength of rule R, which is defined as
T|=A|1(X1) xAlZ(XZ)x T XA"(X() (5)

Fg. 1 showsaschematic block diagram of the TSK fuzzy mode.
In generd, Gaussarttype membership functions are used to build
themodd. They are defined by

cepl X0 oy 5
Air(x) =exp 5 O Th2 L ©6)

where ¢, is the center of the ith Gaussan membership function of
the rth input variable x. and ¢; isthe andard deviation of the mem-
bership function.

The great advantage of the TSK fuzzy modd is its representa
tive power, which stems from its ahility to describe complex non-
linear systems using asmal number of rules. Moreover, the output
of the modd has an explicit functiond form (Eq. (4)), and thein-
dividud rules give indghts into the loca behavior of the modd.
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Fig. 1. Block diagram of the TSK fuzzy model.

The good interpretability of the fuzzy sysem may match the utility
of the PLS method in intuitive dataandyss[Yen et d., 1998].
3. Nonlinear Fuzzy Partial Least Squares (FPLS) Modding

As described previoudy, biologicd treetment plants have differ-
ent and nonlinear dynamics depending on, for ingance, the influ-
ent loads, temperature and the activity of microorganiams, which
may cdl for multiple (nonlinear) modes for the various operating
conditions. In this case, fuzzy modeling, which aggregates severd
sub-modes and integrates weighting functions that reflect the do-
mains of influence of each modd, could be an dternative.

Bang et d. [2003] proposed a fuzzy partid leest squares FPLS
modeding which gppliesthe TSK fuzzy modd to the PLSinner re-
gresson. The FPLS method is badcaly a combination of the PLS
method and the TSK fuzzy modd. The PLS outer projection is used
as adimension reduction tool to remove callinearity, and the TSK
fuzzy inner modd is used to cgpture the nonlinearity in the pro-
jected latent space. An advantage of using the TSK fuzzy modd as
theinner regressor isits interpretability, which fadilitates the design
of the FPLS modd gructure by dlowing human experts to partici-
patein the design process.

4. FPLS Algorithm

Fig. 2 shows aschemetic of the basic FPLS method, which uses
the PLS outer trandform to generate score variables from the data.
Score vectors (t, and u,) of the same factor h are usd to train the
inner TSK fuzzy modd f,(-), which obeysthe following relation

U=fu(t)+e, U]
where g, represents the regression error. The parameters of f(+) should

»
>
+

Second factor Last factor

First factor

Fig. 2. Block diagram of the FPL S method.

be sdected to minimize g, without over-fitting. To summarize, by
not updating the outer rdation FPL S keeps the linear PLS property
thet variables are projected into the directions maximizing the cova-
riance, and it cgptures nonlinearity through the nonlinear modding
capecity of the TSK mode [Bang et d., 2003].

The FPLS dgorithm can be formulated asfollows.

1. Scde X and Y to have zero-mean and unit-variance.

Let E;=X, F,=Y and h=1.

2. For each factor h, take u,, from one of the columnsof F,._;.
3. PLS outer transform:

WI=UTE,1/(uiuy) ®
Wi =W/ ©)
=, W, (10)
GI=t R /() (1
a=a/llcil (12)
U=Fi1G, (13

Iterate this tep until it converges. This gep is called the nonlin-
e iterdtive patid leest squares (NIPALS) dgorithm. Although there
exigs a fager and more gable dgorithm using eigenvectors, we
use NIPAL S to give readers a clearer picture of PLS outer projec-
tion.

4. Find the TK fuzzy-type inner relaion function, f(-), which
predicts the output score u, with the input scoret,.. fi(+), has the func-
tiona form

(D) = gei(bm +ht) 14
where
T,
G =—" 1
p ®
7(t) =expB—“2_—o";)2% i=1,2 -, L (16)

G isthe normdized firing srength and 7, is a Gausdan-type firing
drength for theith rule. Frg, the number of fuzzy rules, L, should
be edimated by the modd designer & an integer vaue that mini-
mizes the regression error of f,(-) without creating an over-fitted
modd. The designer may use information gained from the score
plot or some numerical criteria such as the sum of squared errors
(SSE) for cross vdidation. The designer can then decide the other
parameters such as ¢, ¢, and b, usng anumericd curvefitting func-
tion to minimize the SSE.
5. Cdculaethe X and Y Loadings

phT =ty Ep ol (thT ty) @n
O =UnFyo/(G10) (18)

where 0, =f, (&) =[f(t:(1)), ft:(2)), -, fit-(N))]" for N samples.
6. Cdculate the resdudsfor factor h.

E=E-i—tipn 19
Fv=Fh 1~ Ui (20
Korean J. Chem. Eng.(Val. 21, No. 6)
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7. Let h=h+1, then return to step 2 until dl m principd factors
are cdculated. The number of factors m is decided by the designer.
The designer may use information gained from the score plot or
ome numericd criteriasuch as SSE for cross validation.

The parameters of the fuzzy-type inner rdaion functionf,(-) (i.e,
thevauesof ¢, ¢, and b;) can be decided by various heurigtic rules.
In this work, the ¢, ¢ and b, vaues are determined by using the
fuzzy c-means (FCM) dgorithm [Jang et d., 1997, the nearest ndigh
bor heurigtic rule suggested by Moody and Darken [1989] and a
globd learning procedure (see the appendix for the mathematical
formulations of these methods). Then a numericd nonlinear leest
squares curve fitting function is gpplied for the optimization of the
parameters with repect to minimizing the SSE. However, if the op-
timized modd shows sgns of over-fitting, such as very stegp changes
in its trend, the designer can change and fix some parameters and
then optimize the other parameters to make a smoother and more
reliable modd within the criteriaof hisor her expertise.

As is shown in the dgorithm, the designer’s decisons are em-
phasized in the cdibration of an FPLS mode. Thisaspect of FPLS
represents an improvement over other PLS dgorithms. Generdly,
gructurd parameters such asL and m are selected by using across
vaidation method to avoid the problem of over-fitting. Cross vdi-
dation is often a mugt for high dimensond modds, because the
modd shape cannot be wel presented in visble form. Although
the fuzzy modding process gives particular weight to the gpplica
tion of the expert's knowledge in the modeling process, it is dso
hindered by the problem of high dimensondity. Regardless of the
type of modding, designers should check the vdidity of their modd.
The FPLS method aids designersin modd validation by providing
asmple modeling interface for visua checking, in addition to the
typica cross vdidaion method. The visud check comprises checks
of the eror corrdeion, high leverage data trestment, loca mini-
mum, over-fitting and lower fitting. Checking usng visudization is
possible because of the robugt data reduction and the two-dimen-
sond presentation properties of PLS. Other PLS methods such as
quadratic PLS (QPLS) and neurd net PLS (NNPLS) ds0 havethee
properties, but they lack the interpretability and high nonlineer re-
gression cgpacity of the TSK inner rdation function. The fuzzy rules
of the TSK function provide indghts into the mode! thet dlow us
to make amplelinear predictions of its behavior even in the extrgp-
olation range and to interactively change its parameters. These capar
bilities make FPL S a promising modeling and monitoring method.
5. Prediction Method with FPLS Mode

The FPLS modd trained on a cdlibration data set can be used to
predict the tet data, Let us denote the outer projection vectors of
the m factors by metrix form, i.e, P, Q and W. Then, for anew input
data st X the output dataset Y can be predicted by using the fol-
lowing steps.

1. Scde X by the mean and variance of X,

2. Cdculae the input score matrix

T=XW(P'W)? (1)

where T=[t,, t,, =+, t]
3. Predict output score vectors using the TSK inner modd defined
in Eq. (14), with G, @, and b, for each factor h.

Uy, =Fi(tn) (22)
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4. Predict thescded Y

Y=0qQ 3
where U = [0, G, -, 0] fori=1,2, -, m.

5. Rescale Y by the mean and variance of Y,

Using the PLS outer rdation and the TSK fuzzy-type inner mod-
e, the FPLS method is capable of robustly describing any com-
plex nonlinear system and provides informative hiplots. Because
FPLS uses the outer rdlation of PLS, the andyticad meaning of the
outer projection vectors remains vdid. Hence, various PLS moni-
toring methods are 4ill applicable to FPLS. Moreover, the inter-
pretation based on fuzzy rules gives anew way of monitoring non-
linear sysems. For an example, each sample of a sysem modded
by FPLS can be dassfied according to the fuzzy rule that has the
larget firing strength value.

RESULTS AND DISCUSSION

The FPLS dgorithm was gpplied to two data sets. a smulaion
data st of a benchmark plant and ared data set from a full-scde
biologicd wastewater trestment plant. Fuzzy modd parameters of
FPL S were built by using three heurigtics rules, where the parame-
tersof FPLS, that is ¢, ¢ and b, are determined by usng FCM,
the Moody and Darken rule and aglobd learning procedure, respec-
tively (see the gopendix). To compare with other linear and nonlin-
ear PLS, prediction performances of FPLS are compared with lin-
ear PLS(LPLS) and quadratic PLS (QPLS).

1. Smulation Benchmark

Eight variables were used to build the X-block in the Smulation
benchmark [Spanjers et d., 1998; Yoo et d., 2001, 2002]: thein-
fluent ammonia concentration (Sy,), the influent flow rate (Q,),
the nitrate concentration in the second aerator (Syo.), the totd sus-
pended solid concertration in aerator 4 (TSS,), the DO concentra-
tion in agrated tanks 3 and 4 (S,; ad S, ), the oxygen trander coef-
ficient in agrated tank 5 (K, &), and the internd recirculation rate
(Q.)- The qudity varidbles are the effluent anmonia (S and
nitrate (Syo,e)- Ve used data from 14 days of normd (dry weether)
operation for the development of the modd., The firs seven days
were used for training the modd and the remaining seven dayswere
used for validation.

A comparison of the results of three PLS modelsis represented
in Table 1, where four LV s are sHected for each PLSmodd. Teble1
ligs the percent variances captured of training data (%) and mean
squared error (MSE) of the vdidaion data st, which shows the
regression performance of dl the PLS modds. Explained variances

Table 1. Percent variance captured (%) and M SE of several PLS
modelsin benchmark

LV LPLS QPLS FPLS
X Y X Y X Y
1 6449 40.60 6449 4303 6449 43.68
2 889 60.06 8896 6785 8897 7161
3 9140 7104 9128 7712 9145 7851
4 9685 7225 9704 7866 9710 80.00
MSE 0.60 0.46 0.44
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Fig. 3. Scatter plots (upper plot) and firing strength plot (lower plot) of four latent variablesin FPLS mode (benchmark) (a) first LV
(b) second LV (c) third LV (d) fourth LV.
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of X-block usng LPLS, QPLS and FPLS modd do not show any
paticular difference. The vaues of Y -variance cgptured by the non-
linear modds are larger than linear method. The mean squared error
(MSE) of the vaidation data set indicates thet best prediction per-
formanceis achieved by the FPLS method.

Fig. 3 shows the score plots (upper plot) and firing strength plot
of four latent variables (lower plat) in the FPLS modd. In the score
plats, theamal drde represantsthe center 6 of amembership function
shown in the lower plat and the dashed line crossing the dirdleisits
fuzzy rule. Inthelower plat, the solid lines represant thefiring strength
1, and the dashed lines represent the normdlized firing srength. These
plats dearly show the nonlinear neture of the benchmark plant. LPLS
gives no direct way to cope with this nonlineerity; however, FPLS
can give adirect and interactive way of tregting such nonlinearities
To decide the number of fuzzy rules, we applied various numbers
of fuzzy rules and heurigtic rules to each LV. Then, we found that
*2-2-1-1 fuzzy rulesfor each LV and determining the center of the
fuzzy rule of the first LV by FCM yielded the best regresson per-
formance on training and vdidation data sets. The score plots of
the third and fourth LV's digplayed dmost no nonlinearity; hence,
we used only onefuzzy rulefor each of these LVs Compared with
other nonlinear PLS methods, the FPLS modd gives a visud and
interactive design cgpability which can treat such nonlinearities and
avoid the over-fitting problem. Figs 4 and 5 show the prediction
results of effluent anmoniaand nitrate, S, and Se, in the valida:
tion data st for LPLS and FPLS method. Time series plotsand scat-
ter plotsillugtrate the prediction improvements that are achievable
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through the fuzzy regression gpproach. The scatter plots certify the
modeling capability of FPLS.

These reaults are not surprisng snce the FPLS modd is designed
to cgpture the main variability of the training data st, and the va-
idation data st is generated with the Smilar Satistica propertiesto
the training data. However, the above results are vdid on only the
norma data . In other situations, such as other disturbances cases
other modds may be better than the FPLS moddl. The situation and
the aim of the moddls must determine the best modd sructure.

2. Full-scale WWTP

Process data were collected from a biologicd WWTP tregting
coke wagtewater from an iron and sted producing plant in Koreg,
0-cdled biologicd effluent trestment (BET). Fg. 6 shows the lay-
out of the sudied full-scae plant. This trestment plant uses an ac-

BET2 Pretreated
(@,. COD,.CN,) [ __WWTP
L[] [ |/
Cokes qQ. 7 Settler Final
plant T/K |A|B|C o E|_' WWTP
(coo,,)
(Qg. COD,.CNy) Aeration basin
(MLSS¢, DO,y Tyr.PH,)
Recycle
sludge '
Waste
sludge

Fig. 6. Plant layout of cokeswastewater treatment plant (BET).
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Table 2. Processinput and output variablesin full-scale WWTP
No Variable Description

X, Q Influent flow ratefrom BET2
X, Q Influent flow rate from BET2
X; CN, Cyanideinfluent from BET2
X, CN, Cyanideinfluent from BET3
X; COD, COD influentfromBET2
Xs COD, COD influent from BET3

X, MLSS, MLSS concentration a final agration basin

Xs MLSS MLSS concentration in the returned dudge

X, DO, DO concentration at find aeration basin

Xio T Influent temperature

Xy Taaer  Temperatureinthefinal aeration tank

Xp pHa pH in the final aeration tank

Y, 9SVvI, SVl inthereturned dudge

Y, CN,  Thereduction of cyanide concentration in the effluent
Y, COD,y Thereductionof COD intheeffluent

tivated dudge process with five agration basins (each of Sze 900 nT)
and a secondary darifier (1,200 n). The trestment plant has two
influent Sreems. wastewater arrives either directly from a coke mak-
ing plant (called BET3) or as pretrested wastewater from an up-
stream WWTP at another coke making plant (called BET2). The
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Table 3. Percent variance captured (%) and MSE of several
PLSmodesin BET

LV LPLS QPLS FPLS
X Y X Y X Y
1 17.75 31.76 17.75 3192 17.75 3176
2 3332 4785 3332 4829 33.32 4879
3 4401 5832 4396 58.70 44.01 59.27
4 5296 60.61 52.89 60.83 53.00 61.55
5 59.61 6220 59.55 6290 60.37 63.00
6 64.64 6343 65.10 6390 6557 64.21
MSE of
validation data 113 112 111
MSE of
tet data 167 1.68 171

coke-oven plant wastewater is produced during the converson of
cod to coke. Thistype of wastewater is extremdy difficult to treat
becauseit is highly polluted and most of the chemica oxygen de-
mand (COD) contains large quantities of toxic, inhibitory compounds
and cod-derived wastewaters that contain, eg., phendlics, thiocy-
anate, cyanides, poly-hydrocarbons and ammonium.

Table 2 destribesthe processvaridbles of X and Y blocks Twelve
process and manipulated variables, the X block, were used to mod-
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Fig. 7. Scatter plots (upper plot) and firing strength plot (lower plot) of four latent variablesin FPLS modd in full-scale WWTP (a) first

LV (b) second LV (c) third LV (d) fourth LV.
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e three process output varigbles, the Y block. The Y block con-
d4s of the dudge volume index (SVI), the reduction of cyanide
(ACN), and the reduction of COD (ACOD). The process data con-
sded of daily mean vadues from 1 January, 1998 to 9 November,
2000 with a total number of 1034 observations The first 720 ob-
servations were used for the cdibration of the PLS modds Odd
sample numberswere usad asthetraining set and even sample num-
bers were used as the vaidation set. The remaining 314 observa
tionswere used asatedt data st.

The comparison results of three PLS modds are represented in
Table3. Sx LVs are sHected for esch PLS modd sincethe Y -var-
iance captured by the smdler factors was less than 1%. The MSE
of the cross validation data set was cdculated with the Six LV. FHg.
7 shows the scatter plot and firing strength of the FPLS modd with
gx LVs (the fifth and Sxth LV are not shown), which shows the
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inferred relation between input and output latent variables. Unex-
pectedly, the datafrom BET showed no obvious nonlineerity. How-
ever, we did find some nonlinear characteridtics at the second LV,
which leeds usto use three fuzzy rulesfor this factor. Thefirg and
later factors showed dmost no nonlinearity and, hence, one fuzzy
rule was used for each of these LVs.

The vdue of X and Y-variance captured by the FPLS modd is
larger than that of LPLS and QPL.S methods, and the mean squared
error (MSE) of the validation st is smdlest for FPLS. However,
contrary to our expectation, the MSE for the test data set showsthet
LPLS and QPLS have better prediction performance than FPLS.
During the test data set, WWTP received alarge influent load and
experienced a 9gnificant change in the operating condition. These
process trandtions dtered the dudge, which changed the process
dynamicsin BET. Because the FPLS modd is designed to capture
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Fig. 8. Time seriesplots of predicted and actual output in full-scale WWTP (a) SVI with LPLS, (b) SVI with FPLS, (c) ACN with LPLS,
(d) ACN with FPLS (¢) ACOD with LPLS (f) ACOD with FPLS.
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the nonlinear behavior and Satidtica properties of the training data
<, the FPLS modd showed poorer prediction result in these dis-
turbances cases. Figs. 8 and 9 show the time series and scatter plots
of red and predicted vdues with LPLS and FPLS modd during the
vdidation periods. The prediction performances of COD and CN
reduction are satisfactory. But, the prediction of SVI of secondary
ettler is less good compared to those of the other process quality
vaiables LPLS and FPLS show asmilar prediction performance.
Since it is difficult to make a far comparison between models
whaose agorithm has its own characterigtics, we will not present a
detailed comparison between modds, but bdow we will outline the
difference between FPLS and the other nonlinear PLS (NLPLS)
methods in two agpects Frg, inner relaion modds of FPLS usu-

dly take on a gentler curvature than those of NLPLS, as they are
locdly weighted averages of linear fuzzy rules and modd design-
erswould not favor highly nonlinear shepes of inner relation mod-
ds whose vaiadles are the reaults of linear computations. In cor+
tradt, other NLPLS models can take on any nonlinear shape to min-
imizethe SSE, providing this shapeis permitted by crossvdidation.
If an FPLS modd were built only according to the cross-vaidation
result, with no input from the experts, it could have greater curva:
ture. Hence, it ultimately depends on the experts decision whether
to use a conservative modd or a sum of sguare error (SSE) min-
imizingmodd [Bang et d., 2003].

Second, the number of regression parameters estimated for each
nonlinear PLS inner mode depends on afew gructurd parameters,

Korean J. Chem. Eng.(Val. 21, No. 6)
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such as the order of a polynomia for QPLS, the order of polyno-
midsand the number of knots for the spline PLS (SPLS), the num-
ber of neuronsfor neurd net PLS (NNPLS) and the number of rules
for FPLS. They dso vary depending on the nonlinearity of the mod-
eed sysgem. If the vaue of the structurd parameters is increased,
the regression SSE of the modd will decrease and the moddl will
take on a more nonlinear shape. Because these gtructurd parame-
ters have different physica meanings, their values cannot be com-
pared with those of another NLPLS. However, if the values are the
same, FPLS gengrdly uses more parametersthan other NLPLS meth:
ods. For example, if the values of the structurd parameter are L for
both NNPLS and FPLS, an inner moddl of NNPLS needs 2L +1
regresson parameters for the input and output weights of the neu-
rons plus a bias term, wheress that of FPLS needs 4L parameters
for ¢, o and b. However, this does not mean that FPLS is a more
complex modd to interpret. Because FPLS andyzesthe sysem using
ub models represented by fuzzy rules, the 2L parameters used for
b hdp in the preparation of sub moddsand the 2L parameters used
for c and o hp to interpret the relationship between the input deta
and the sub modds. Therefore, dthough FPLS uses more regres-
son parameters than other NLPLS methods for the same structurd
parameter, its superiority as an informative modd will rateit highly
among the dementd NLPLS methods [Bang et d., 2003; Yoo &
a., 2003].

CONCLUSION

The FPLS modd was gpplied to two nonlinear biologicd pro-
cesses and the experimentd results show the gpplication of the d-
gorithm. The FPLS modd not only possesses nonlinear moddling
ahility, but dso the robusiness and interpretability of the PLS and
fuzzy methods Moreover, because the TSK fuzzy modd is a com-
bination of linear sub-modéls, it causes the FPLS modd to provide
more Sable esimations of output on extrgpolation. The case Sudy
cearly showed that it gave good modeling performance and higher
interpretability than any other nonlinear PLS modding method.
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APPENDICES- IDENTIFICATION
OF THE PARAMETERS OF FPLS MODEL

1. The Center of a TSK Fuzzy Modd (c) usng FCM

The center of a TSK fuzzy modd ¢ in each rule can be decided
on the bedis of the dugters of CFCM dgorithm, which is previ-
oudy described.

=5, 1=1,2, L (A1)
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where u, ; isthe membership function of each rulei. Thisdustering
method essentidly dedls with the task of splitting a st of patterns
into a number of clusters with respect to a suitable Smilarity mea
aure. It is able to identify regions where the sysem can be localy
goproximated by the TSK modd. So, it is gpplied to obtain arule-
basad modd focusing on compactness and trangparency. As aresult,
eech fuzzy rule built at this point can become a representetive re-
gresson modd of itsclugter.
2. The Width of a TSK Fuzzy Modd (@) usng Moody and
Darken’ Rule [1989]

The widths of a TSK fuzzy mode, g, are determined by usng
the nearest neighbor heuristic suggested by Moody and Darken,
that is,

o :Ll)-il((:i —c.)z} =12, L (A2

where g (1=1, 2, -+, p) arethe p (typicdly p=2) neares neighbors
of the center ¢. Inthis paper, we assume that dl Gaussan member-
ship functions have the same width g, which is obtained by aver-
aging g in equation (A2) over dl L centers.
3. The Linear Parameters of a TSK Fuzzy Modd (b;) using
Global Learning Algorithm [Yen et al., 1998]

The parameters, b, of the TSK fuzzy modd can be determined
by usng agloba learning method. Globa learning chooses the pa-
rameters of the fuzzy rulesthat minimize the objective function J.

J=(y—-Xb)'(y—Xb) (A3
where

W (DWi(1)Xs(1)Wi(2)X1(2) Wi (1)X,(1) -

« <] MW X DWW (D (2)
W (NYWa(N)Xs(N )W (N (N) -~ (N (N)
W (W (DX (D) . (1%, (1)
W(2W(2X(2) . (D%, (2) ”
W N)W (N)X,(N)... W (N), (N)
b=lbyby by ... By by ... ] (A5)
y=ly@) y(2) - y(N)]" (A6)

, W; isthe normdized firing srength and N is the number of train-
ing datasets. If the parameters of the antecedent membership func-
tions are predetermined, the only unknown component in Jis the
parameter vector b whose dements are the parametersin the linear
regresson equetions of the TSK modd . We can use the wel-known
leest Squares estimation (LSE) method to solve the parameter vec-
tor.

b=(X"X) X'y (A7)

Or we can use acomputetiondly efficient method, such assngular
vaue decomposition (SVD), to solve the Shgularity problem in com-
putation of theinverse of X"X. Applying SVD to X yidds

X=UzV' (A9)
where U=[u, U, -+ UJ'OR™ and V=[v; v, -+ v, ]TOR™™ are
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orthogonal matrices, and E=diag(a;, 0,, -+, 0 )R is adiago-
nd matrix with ;20,2 --20, 2L. Subdituting (A8) into (A3) and
after mple manipulaions, the minimum Eudidean norm solution
of the fuzzy rule parameters, b, is computed as

s uiTy

b =Zl_»_vi (A9)

G

where sisthe number of nonzero Snguler vauesin Z.
NOMENCLATURE

A; :fuzzy satsthat are characterized by the membership func-
tion A;(x)

E :residua matrices of the predictor variables

F  :residua matrices of the response variables

fo(-) :inner function of TSK fuzzy model

L :thenumber of rules

m : number of latent variables

P :loading matrix

p. :loadingvector

R :theithfuzzy rule

T  :scorematrix

t, . score vector

X [X % x]Tinput variables

X :input datamatrix

Greek Letters

¢, :thecenter of theith Gaussian membership function of the
rthinput variable x,

[* : thefiring strength of rule R;

g :thewidth of the membership function

Abbreviations

FPLS : fuzzy partid least squares
PCA : principa component analysis
PLS : partid least squares

QPLS: quadratic partial least squares
TSK : Takagi-Sugeno-Kang
WWTP: wastewater treatment plant
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